
NISTIR 6057

CIM Framework Experience Report for 1996

Contents

1 Introduction 1

2 Job Management 1

3 Speci�cation Management 3

4 Machine Management 5

5 Materials Management 6

6 Conclusion 6

A Comments on CIMF \Abstract" Interfaces 7

B Detailed Comments on CIMF Job Management Interfaces 7

C Detailed Comments on CIMF Speci�cation Management Interfaces 8

D Detailed Comments on CIMF Machine Management Interfaces 11

E Detailed Comments on CIMF MachineResource Component 15

F Detailed Comments on CIMF Process De�nitions 20

G Other Miscellaneous Comments on CIMF 26

List of Figures

1 NAMT Framework Architecture . 2

This work was funded through the National Advanced Manufacturing Testbed (NAMT) project and
the Systems Integration for Manufacturing Applications (SIMA) program.

CIM Framework Experience Report for 1996

David Flater

Edward Barkmeyer

Evan Wallace

Peter Denno

Mike Iuliano

September 18, 1997

Abstract

The National Advanced Manufacturing Testbed (NAMT) Framework prototype is a distributed,
object-oriented manufacturing system that serves as a testbed and trial implementation for
emerging industry-developed speci�cations. This report documents the �ndings of the Frame-
work team in 1996 with respect to version 1.3 of SEMATECH's CIM Framework (CIMF).

1 Introduction

The National Advanced Manufacturing Testbed (NAMT) Framework project[1] has constructed a
prototype distributed manufacturing system that serves as a testbed and trial implementation for
emerging industry-developed speci�cations. The �rst year of the Framework project resulted in a
substantial number of problems found with applying version 1.3 of SEMATECH's Computer Inte-
grated Manufacturing (CIM) Application Framework Speci�cation[2] in the context of our testbed
architecture. The following sections detail those issues.

Since the version that we reviewed was e�ectively only a draft, the issues that we describe below
should not be interpreted as problems with the CIMF as released; the CIMF has continued to
evolve, and our intent was merely to identify potential sources of misunderstanding that could slow
the eventual deployment of the speci�cation.

2 Job Management

The purpose of the job control interfaces in CIMF 1.3 was to specify the operations used for creating,
starting, and otherwise controlling jobs. However, the intent behind the speci�c operations chosen
was ambiguous. There were two major possibilities, neither of which was fully con�rmed or denied
by the text:

� The intention was to provide a plug-and-play architecture, where the interfaces were de�ned
with su�cient clarity to enable interoperability between software components from di�erent
companies. In this case, the architecture was not clear, and the interfaces de�ned in the CIMF
did not form a coherent functioning whole.

� The intention was to support the union of all architectures, providing enough operations on
each interface to enable the usage of any possible model of job control. In this case, the
semantics of many of the operations were unclear, some operations were still missing, and the
subsets that yielded workable models of job control were not identi�ed.

The following quotes from the Implementation Handbook for version 1.21 were later found to
support the second theory:

1A revision of the Implementation Handbook for version 1.3 has not been released.

1

Guardian

 Product Data
Manager (PDM)

 Shop
Controller

 Workcell
Controller

Measurement
 Controller

Tool Change
 Controller

 Fixturing
Controller

Production
Information
Base (PIB)

 Coordinate
Measuring Machine
(CMM) or simulation

AP219
(future)

CORBA

CORBA

CORBA

CORBA

NML

NML

NML

NML

SDAI

Job Control Interface
Other Interface

Figure 1: NAMT Framework Architecture

The SEMATECH CIM Application Framework Speci�cation seeks to unify a wide range
of Manufacturing Execution Systems (MES) software by categorizing common features
found among them in an object-oriented manner. The speci�cation, however, does not
explain how to interpret this common object model to create pluggable applications.

[...]

Interoperability among applications does not automatically result from using CIM Frame-
work objects. In order for two or more applications to be pluggable, they must share
the same \binding." A major part of this document is devoted to explaining what
SEMATECH has learned about the binding, from low level \nuts and bolts" issues of
communication, to placement of CIM Framework object instances across physical ma-
chines in a distributed architecture. Even with the same binding, applications do not
automatically become \pluggable" via use of the CIM Framework[3].

Unfortunately, the possible \bindings" were not identi�ed, and we were not able to �nd a binding
that would produce a working system within the NAMT architecture (see Figure 1). The NAMT
architecture includes several levels of control, including at least the shop level, the workcell level, and
the machine level. The components (shown as boxes in Figure 1) are connected by several means
of communications (shown as arrows), including CORBA[4]. The shop level includes the scheduling
(if any) as well as the dispatching of tasks to workcells; the workcell level may correspond to the
CIMF Machine object, and the machine level (exempli�ed in Figure 1 with a Fixturing Controller
and Measurement Controller) may correspond to the CIMF Machine Resource object. However,
it really is not clear which classes from the CIMF should be used by the controller at each level,
and any given mapping that we attempted to make between the CIMF and the NAMT architecture
posed serious problems.

The NAMT workcell is an abstraction comprising one or more mechanical subsystems (i.e.,
machines) and possibly an operator. The purpose of the abstraction is to make a meaningful division
between shop-level control and the lower levels of control. While the shop controller manages
processes at the routing level (which tasks will be done at which stations), the workcell controller
manages all processes at one station, a level between the shop and the machine. An example of

2

a workcell task would be: \Rough cut workpiece xxx." The workcell controller decomposes this
into steps performed by its components: \(1) Get the operator to load workpiece xxx. (2) Get the
machine to run NC-program yyy. (3) Do the following extra things. (4) Finish." Note that the
NC-program de�nes a complex task at the next level down, which we call the machine level. And
for the operator (or a positioning robot) there is a set of instructions for loading and positioning the
part that is analogous to the NC program for the cutting machine.

The CIMF contains multiple classes that seem to map imperfectly to the workcell. One of the
causes of this is the necessity of distinguishing the persistent view of a controller (any controller) from
the non-persistent view. The question \Are you turned on?" cannot be addressed to the controller
itself, since it cannot answer if it is turned o�. Instead, a persistent database component such as the
Production Information Base must serve as its proxy to answer questions relating to power status,
scheduled downtime, and so on. Unfortunately, even this understanding does not su�ce to explain
the classes in the CIMF, because control operations like pause, resume, and makeActive that only
make sense for the non-persistent, live controller are included on classes that can only pertain to the
persistent view. The
ow of control that results is unusual.

The other side of the problem is that the CIMF contains no classes that map to the shop
controller. ProcessJob and ProcessJobManager are both specialized to the workcell level, and Man-
agedJob and JobManager are intended simply as abstract superclasses. Furthermore, neither Job-
Manager nor ProcessJobManager has an associated set of states. There is a distinction between job
states and job manager states that must be preserved { the action of pausing the dispatcher, allowing
currently executing jobs to complete normally but not initiating any new activity, is distinct from
the action of pausing all jobs that are currently running. The most appropriate set of states for both
the shop and workcell controllers (job managers) seems to be that of the MachineResource class,
but the rest of the MachineResource class is not applicable above the machine level. According to
the comments that we have received from SEMATECH, the MachineResource class is slated to be
merged with Machine. Also, like ManagedJob, MachineResource lacks \fault" states. It is not clear
how a controller can inform its superior and/or its operator that human intervention is needed, and
there is no state
ag that can be set to indicate that a job or a controller is stuck waiting for help.

Ultimately, we found no consistent interpretation of these CIMF classes that allowed us to map
them to components in our system. It was always necessary to take pieces of one class and pieces
of another. In some cases, there were super
uous operations; in others, necessary operations were
missing.

In the process of trying to �nd a consistent interpretation of the CIMF, we identi�ed four
possible models of job control { four di�erent generic approaches for choreographing the component
interactions that would enable our system to function correctly. That which distinguishes one model
of job control from another is the allocation of objects among physical machines. These models
would correspond to di�erent CIMF \bindings" if the CIMF provided the classes needed for the
shop controller and de�ned all of the communication channels between the shop and workcells. This
is the subject of a separate paper[5].

The summary comments that were delivered to SEMATECH can be found in Appendix B.

3 Speci�cation Management

The Document Management Component of the CIMF is incomplete as a speci�cation for an interface
to a commercial Product Data Manager (PDM) or Electronic Document Manager (EDM), even for
the limited needs of a production system. The Document Management Component contains the
classes (and concepts) DocumentManager, DocumentSpeci�cation, and DocumentRevision and the
misnamed Version Manager, which actually deals with Engineering Change Orders. The following
additional concepts are needed:

1. DocumentType. In addition to its \name," which identi�es a particular document instance,
such as a particular NC-Program, it is also important to model its \type," which identi�es
the kind of document it is, e.g., that it is an NC-Program and not a CAD model. In a
commercial PDM/EDM, the behavior of a Document { work
ow, access rules, versioning rules,

3

etc. { is associated with its type. (It is, of course, possible to embed the type in the naming
convention, but this is often inconvenient to both the sender and the receiver of document
access operations.)

2. DocumentForm. A given revision of a given speci�cation may need to be represented in
di�erent forms (or �le formats) for di�erent consumers, e.g., a drawing may be stored in the
native format of the CAD package in which it was created, but also in a standard display form
for use in operator displays. In general, a software package retrieving the document must be
able to specify the form it wants.

3. DocumentRelationship. For engineering purposes, it is important to model and maintain cer-
tain relationships among documents and other \business objects" managed by the PDM/EDM:
\contains" allows for the management of objects that are packages of documents, such as the
collection used at a given workcell; \depends on" captures which versions of other documents
a given document depends on, so that ripple e�ects of changes can be determined; \derived
from" supports traceability of speci�cations; \supersedes" supports version management. This
capability, however, does not seem to be needed for production-only usage of the PDM/EDM.

In addition, the concept of version management is critical to automating the transmission of
engineering speci�cations to production. In PDMs, the following concepts are all aspects of version
management.

� \version" { a speci�cation modi�ed for a particular use,

� \revision" { a change in the speci�cation,

� \e�ectivity" { the range of dates or product instances to which a particular revision applies,
and

� \change notice" { a directive to make a set of revisions simultaneously e�ective in production.

The CIMF supports a much simpler model of these concepts. The CIMF model seems to be \lin-
ear e�ectivity by date," that is, the \current" revision of a document is in e�ect until the date on
which the \next" revision becomes active. Presumably, making related speci�cations simultaneously
e�ective is the responsibility of the user. One would expect this to be the function of the ChangeNo-
tice, but no relationship between the ChangeNotice and any speci�cation revisions is modelled or
even discussed. Moreover, the ChangeNotice does not itself have an e�ective date! Apparently its
\activation" makes it e�ective as of that moment.

The CIMF Version Management model may be adequate for semiconductor fabrication, but it
is inadequate for the manufacture of electro-mechanical parts. Because of staggered deliveries of
materials and substitutes, and because of pre-emption of resources by higher-priority jobs, it is
common for multiple batches of the same product to be on the shop
oor in di�erent stages of
processing, and each batch may have a di�erent set of processing speci�cations. This makes it
possible for multiple revisions (or versions) of a speci�cation to be \active" at any given time, with
the e�ectivity tied to batch or lot numbers, or to the date on which the lot \started." A Change
Notice itself must have an \e�ectivity," by date or batch/lot and possibly by location (i.e., which
factories), and that e�ectivity is usually set some time in advance of its occurrence. And, it is the
Change Notice e�ectivity that de�nes the e�ectivity of the related production speci�cations for the
target facility. Supporting this capability requires a number of signi�cant changes to the CIMF
model.

Finally, the CIMF model of \document content" is \any." This is too general, as it does not
make clear whether the user retrieving a document content will get a �le name or a �le text. While
we agree that there is a need for other possibilities as well, it is necessary to make clear whether an
operation gets the �le text, and how a large �le text can be handled. (Appealing to other CORBA
services is a reasonable solution, but it needs to be documented.)

In addition to these major issues, there are also many apparent anomalies, unexplained changes
and outright errors in the comments and descriptions for the speci�cation management interface. A
detailed enumeration of these can be found in Appendix C.

4

4 Machine Management

The major problem with the Machine Management component is that several classes combine con-
cepts that must be physically separated in useful implementations. With respect to factory re-
sources, the agent who manages description of a resource (the persistent view of a resource, as
discussed above), and the agent who manages control of a resource (the non-persistent view) should
be distinct. But in the CIMF, they are not. Examples:

� The class Machine has control operations like pause and resume, but also descriptive oper-
ations: con�guration operations like addProcessResource, and scheduler \gating" operations
like reserveFor.

� The class MachineResource, and all its subtypes except for ProcessResource, have purely
descriptive operations, but MachineResource is modelled as a subtype of MovementResource,
which accepts \hando� commands," i.e., transfer control operations. And the ProcessResource
subtype of MachineResource also has the control operations doProcessJob and canMakeActive.

� The description of the ProcessJobManager class (the obvious model of the controller) indicates
that it should receive new Job invocations from the ProcessResource and new material
ow
invocations from the TransferResource.

The CIMF apparently models an agent who maintains the persistent information and also serves
as a front-end for the actual machine controllers, using other standard and non-standard protocols
for the actual communications. This is certainly a possible architecture, but merging the control
and description operations into one class forces it to be the only possible architecture. And this
architecture is not desirable for the future { it makes it impossible for future controllers to conform to
the CIMF as a standard by providing the standard control operations themselves, and thus eliminate
the front-end. By comparison, separating the control and descriptive operations into di�erent classes
allows many architectures { one implemented agent can support one class or multiple classes.

A lesser, but also important, problem is the handling of \machine setup." A \process capability"
is the ability of a given machine to perform a given process with some con�guration; a \machine
setup" is a speci�c machine con�guration and/or the work needed to achieve that con�guration. In
the general case, the relationship between the two is many-to-many: a single setup may support
multiple processes, and a single process may be possible with di�erent setups of a machine or require
di�erent setups on di�erent machines. It seems that the CIMF model is intended to hide the machine
setup altogether, so that a machine at any given time has a \set of ProcessCapabilities," i.e., those
that correspond to its setup. The weakness of this model lies in the fact that machine setup is also
a process that consumes resources and time, and good schedulers need to know both what process
capabilities are currently present on a machine { what the setup state is { and what resources need
to be scheduled to create a particular set of capabilities on otherwise idle machine { what the setup
process requires.

Finally, the aspects of machine description and control that relate to material storage and move-
ment are inadequately explained and in some cases very confusing. The problem centers on the
terms Port and Portal, whose de�nitions can be easily construed to overlap and whose operations
are con
icting. It appears that the meaning of some of these objects and relationships changed
from a prior version and not all of the operations and terminology were made consistent between
the \materials transfer" models and the \materials processing" models. The problem is exacerbated
by the attempt of the CIMF to keep pace with the terminology and material handling models of a
separate ongoing semiconductor industry standard. There should be a unifying model here, but it
is not present in CIMF 1.3. This makes it di�cult to develop a clear appraisal of the utility of this
model to the analogous objects and operations in the manufacture of electro-mechanical products.

A detailed enumeration of individual problems can be found in Appendix D.

5

5 Materials Management

The Materials Management component is the one component of the CIMF that is likely to be directly
useable in the manufacture of electro-mechanical products. The one complaint is that many of the
operations assigned to subtype SCMaterialManager (semi-conductor materials) should properly be
assigned to the general (super)class MaterialManager, as they relate to Lot management in general,
and not to wafer management in particular.

For electro-mechanical part manufacture, however, the model of Durables (Tooling and Fix-
tures) is not adequate. This is to be expected, because tooling for semiconductor fabrication is
much simpler. Unfortunately, (reversing the behavior of SCMaterial versus Material) several over-
simpli�cations have been introduced into the general class Durable. These must be modi�ed to
produce a generally useful model.

A minor point is that the nomenclature \Product" is used in the CIMF (and in semiconductor
fab jargon) to mean \Workpiece," but this terminology does not generalize to discrete parts, or even
to the discrete aspects of semiconductor manufacture (dice, mount, test and package). In almost all
discrete parts industries, the term \product" refers to a type of manufactured object, as opposed
to \instances in process," which are called \parts," \pieces" or \units." (The term is used for the
in-process material in process industries, but there is no equivalent \piece" aspect.)

A detailed enumeration of individual problems can be found in Appendix E.

6 Conclusion

As a result of the work done by the Framework team, ambiguities and technical problems that
threatened the applicability of the CIM Framework were reported to SEMATECH while the doc-
ument was still in its early stages. While some problems in machine management and document
management had been discovered by other reviewers, our analyses of job management and machine
setups provided unique input.

SEMATECH intends for version 2.0 of the CIM Framework to be a complete and polished
speci�cation, the end result of the 1.X revision cycles. We are grati�ed to have contributed to that
process.

References

[1] Howard M. Bloom and Neil Christopher. A framework for distributed and virtual discrete part
manufacturing. In Proceedings of the CALS EXPO '96, Long Beach, CA, October 1996.

[2] Lawrence Eng, Ken Freed, Jim Hollister, Carla Jobe, Paul McGuire, Alan Moser, Vinayak Parikh,
Margaret Pratt, Fred Waskiewicz, and Frank Yeager. Computer Integrated Manufacturing (CIM)
Application Framework Speci�cation 1.3. SEMATECH, 2706 Montopolis Drive, Austin, TX
78741 U.S.A., 1996.

[3] Ken Freed. Implementation Handbook for the Computer Integrated Manufacturing (CIM) Appli-
cation Framework Speci�cation 1.2, page 1. SEMATECH, 2706 Montopolis Drive, Austin, TX
78741 U.S.A., 1995.

[4] OMG home page. <URL:http://www.omg.org/>.

[5] David Flater, Edward Barkmeyer, and Evan Wallace. Four Models of Job Control. National
Institute of Standards and Technology (forthcoming), 1997. To be available from the National
Technical Information Service, Spring�eld, VA 22161 U.S.A.

6

A Comments on CIMF \Abstract" Interfaces

What is the purpose of OwnedEntity?

The class OwnedEntity is a pure factorization (\mix-in") that seems to be some kind of implemen-
tation convenience. Its only attribute is attribute any owner;. Such a model is a guideline, not a
class: an OwnedEntity is something that has an \owner" attribute. But there is no commonality of
the type of owners. This characteristic is clearly better modelled by giving each \OwnedEntity" type
its own owner attribute with the proper object type. A few OwnedEntity types might have to settle
for \object," because di�erent members of the class can be \owned" by objects of di�erent classes.
But at least this would encourage the documentation to specify the range of classes intended in that
case. In any case, \any" is too broad { all owners must be objects. Of course, the implementation
conscious might want to use \any," so that the owner could be implemented as a \string," but in
this case, \string" is a just a poor model for NamedEntity.

Thus the class OwnedEntity should be discarded and each of its current subtypes should declare
the owner attribute properly. If there is an implementation intent here, then it should be explained
and the use of OwnedEntity as a supertype should match that intent.

Redundant operations on ComponentManager

What is the relationship between the operations ComponentManager::makeStartingUp() and
Resource::startUp(), ComponentManager::makeShuttingDown() and Resource::shutdownNormal(),
ComponentManager::makeStopped() and Resource::shutdownImmediate()?

Because ComponentManager is modelled to inherit from Resource, it will actually have all 6
operations. It seems that either the operations on Resource are intended to be \virtual" and should
be removed from the IDL, or the operations on ComponentManager are redundant and should be
removed from the IDL. In any case, there should not be two sets of operations and the spelling
should be made consistent.

B Detailed Comments on CIMF Job Management Interfaces

No Class for Shop-Level Job Manager

The ProcessJobManager class corresponds to what we would call the workcell level of control. It
seems to us that most factories will have at least two levels of control: the workcell level, and the
shop level. The CIMF provides no class for the shop-level controller.

We believe that the control interface at the shop level and at the workcell level should be nearly
identical; they should each inherit the same interface from a generic superclass, i.e., JobManager.
This then extends easily to hierarchical control with more than two levels.

No States for Job Managers

Neither JobManager nor ProcessJobManager has an associated set of states. There is a distinction
between job states and job manager states that must be preserved. Only having one or the other is
not adequate; pausing all managed jobs is di�erent than pausing the controller. The most appropriate
set of states for both the shop and workcell controllers (job managers) seems to be that of the
MachineResource class. But the rest of the MachineResource class is not applicable above the
machine level, and according to the comments we have received, the MachineResource class is slated
to be merged with Machine.

Super
uous and Misleading Job Control Operations

Feedback that we have received previously from SEMATECH has done much to clarify the intended
job control architecture of the CIMF. In a nutshell, we now understand the intended job control
architecture to be the following:

7

1. The supervisory controller invokes createJob in the subordinate to create a job.

2. Operations of the form make-something (makePausing, makeNotPaused, makeAllManaged-
JobsAborting, etc.) are the commands to control the state of jobs and/or job managers.

3. The status of jobs is reported back to the supervisor through events.

However, this interpretation leaves us with the following issues:

1. The doProcessJob operation is super
uous. Instead you should use makeQueued and/or make-
Active.

2. The informCompletedJob operation is super
uous. There is a JobCompletedEvent.

Based on our own experiences, we would be inclined to add operations along the lines of in-
formJobPausing, informJobAborting, informJobAborted, and so on, and to stop using events for
closing the control loop between supervisor and subordinate. However, this is not consistent with
the direction that the CIMF has chosen.

No Fault Handling

In real manufacturing facilities, being able to deal intelligently with unexpected failures is among
the most important design considerations. Unfortunately, this capability does not appear to have
been provided in the CIMF.

Let us consider the scenario where an operator has instructed the controller to pause a particular
job, but while the job is approaching the next convenient pause point, a piece of machinery gets
stuck and somebody needs to go give it a nudge. When we try to communicate this fact using the
CIMF facilities, we �nd two problems.

First, we �nd that the states associated with ManagedJob do not adequately distinguish between
normal states and fault states. As far as we know, our unfortunate job remains in the concurrent
state described by Executing, Pausing, NotStopping, NotAborting. We need an additional quali�er
to indicate that the job requires human attention. Simply throwing the job into the Aborted state
is unacceptable, since this will needlessly ruin a workpiece and may even induce higher-level jobs to
abort similarly.

Second, we �nd that it is not clear how a controller can inform its superior and/or its guardian
(operator interface) that human intervention is needed. An operation or event is needed for this
purpose.

Missing Operations

JobManager has allQueuedManagedJobs, allActiveManagedJobs, allFinishedManagedJobs, all-
StoppedManagedJobs, and allAbortedManagedJobs. It lacks allCompletedManagedJobs and all-
CancelledManagedJobs.

C Detailed Comments on CIMF Speci�cation Management

Interfaces

P. 161, clause 4.2.4.1: \document speci�cations" should be \speci�cation documents."

P. 161, Document Management component: There are 3 missing objects in the OMT diagram:

a. DocumentType. That is, a \type" which speci�es the behavior, work
ow, access rules, al-
lowable states signo� rules, allowable forms, etc. for a DocumentSpeci�cation. The concept
DocumentType is missing from the CIM Framework, but is critical to all WorkFlow Manage-
ment software systems.

8

b. DocumentForm. The user needs to be able to represent multiple forms of the same conceptual
revision. A revision has a master form (the original), e.g. Pro/E native form, and derived forms,
e.g. IGES, DXF. Each form has its own documentContent. So there seems to be a missing
object here. That is, a DocumentRevision has DocumentForms and each DocumentForm has
a formType (string), which might be its (NamedEntity::)name, and a documentContent.

c. DocumentRelationship. Documents may have relationships important to con�guration man-
agement. Speci�c subclasses, e.g. ProductSpeci�cation, may have speci�c modelled relation-
ships, but the PDM must be aware of \dependency" relationships. In addition, users may de-
�ne other relationships, such as product families. A document relationship has a one-to-many
relationship with DocumentRevisions (not Speci�cations, we think) and MAY have a 1-to-1
relationship with a particular DocumentRevision (sometimes parent { relationship based on,
sometimes dependent { relationship depends on).

P. 162, DocumentManager::createDocumentNamed: The new DocumentSpeci�cation should
be related to a \DocumentType" by a parameter in the create operation. See above.

P. 163 Class DocumentManager: The operation removeDocumentNamed has a misspelling of
the exception name: DocumentSpeci�cationHasRevisionsNoRemoveSignal.

P. 163 Class DocumentManager: The operation sequence<DocumentRevision> allRevisions();
is not an operation on the DocumentManager object; it should be sequence<DocumentSpeci�cation>
allDocuments();

P. 163 Class DocumentManager: �ndDocumentNamed should raise DocumentSpeci�cation-
NotFound if it fails, rather than DocumentSpeci�cationRetrievalFailed. It is not clear why the v1.2
speci�cation was changed in this regard. ...NotFound indicates there is no speci�cation with the
given name, which is the case here. NotFound is neither more nor less of a problem for \�nd" than
it is for \remove," so why the di�erence?

P. 164 class DocumentRevision: Only one \active" version is an extremely strong limitation.
The assumption being made is that the \e�ectivity" of one revision [�rst-date of use, last-date
of use] does not overlap the e�ectivity of any other. In the general case, particularly of complex
assemblies, this is not true { one revision may describe parts currently in the �rst fabrication phase,
while another describes parts in a late fabrication phase, and a third describes parts in some post-
fabrication assembly phase, all of which are currently active because of feedback, tooling changes,
materials changes, etc.

P. 164 DocumentRevision attribute documentContents: Since the type is \any," how does
the user determine what the \form" of the contents is?

P. 164 class DocumentRevision: Is holds() the same operation as get documentContents(), i.e.
the retrieval operation on the documentContents attribute? If not, what is it?

P. 164 class DocumentRevision: It appears that holds(), or get documentContents, could fail
and be able to raise DocumentContentsRetrievalFailed, an exception that is not documented. When
the DocumentManager classes are implemented in a PDM, the contents �les may or may not be
resident within the PDM itself, and thus their retrieval can fail even when the Revision object is
\intact."

P. 165 class DocumentRevision: The user needs to be able to represent multiple forms of the
same conceptual revision. See DocumentForm above.

P. 170 Class DocumentSpeci�cation: What is meant by \lineage order" for the sequence of
DocumentRevisions? Note that addRevision and createRevisionNamed do not provide for position-
ing, so \lineage order" is derived from some other datum or behavior: activationDate? chronological
order of add/create invocations?

9

P. 170 Class DocumentSpeci�cation: Operation �ndRevisionNamed should raise Documen-
tRevisionNotFound if it fails, rather than DocumentRevisionRetrievalFailed. It is not clear why the
v1.2 speci�cation was changed in this regard. (See above argument.)

P. 170 Class DocumentSpeci�cation: For operations addRevision and createRevisionNamed,
the descriptive text does not make clear the functions of these operations.

Is addRevision intended to be a \copy constructor," i.e. an operation that makes a new Documen-
tRevision object with the same (initial) contents as an existing one? If so, the text should say
that.

It seems that createRevisionNamed with also \adds a document revision to the list of revisions that
are associated with the DocumentSpeci�cation." Otherwise why would it be an operation on a
DocumentSpeci�cation object?

The alternative interpretation is that one uses createRevisionNamed with to construct a Documen-
tRevision object and addRevision to link it to a DocumentSpeci�cation, but then addRevision should
return void and createRevisionNamed with should not be an operation on DocumentSpeci�cation.

P. 170 DocumentSpeci�cation::createRevisionNamed with: This operation seems to have a
missing parameter: Form of the versionedObject { AP203�le, ASCIItext�le, DXF�le, etc.

P. 170 DocumentSpeci�cation::createRevisionNamed with: If versionedObject is a BIG �le,
how does it get moved? Is the client supposed to have it in a large \string" in memory? Or is moving
the �le a separate service supplied by the client's system and used by the DocumentManager?

We suggest that both cases should be supported. Filename should be one of the types permitted for
versionedObject and the DocumentType for the DocumentSpeci�cation should determine whether
the �le is copied or pointed to. This means that there is really another operation:

/* creates a revision from a file accessible to the DocumentSpecification,

* possibly by invocation of some remote file access services.

* Whether the file is copied into the Specification or simply pointed

* to (and retrieved on a request to retrieve documentContents) is an

* implementation and policy issue. */

DocumentRevision createRevisionNamed_fromFile (

in string revisionName, in string documentFormat,

in string filename)

raises (DocumentRevisionDuplicateSignal,

DocumentTextRetrievalFailedSignal);

P. 170 class DocumentSpeci�cation, removeRevisionNamed: The comment that describes
the operation should read: \Remove the named DocumentRevision associated with the Docu-
mentSpeci�cation."

P. 174 class ChangeNotice:

The parameters to operation createChangeNoticeNamed inDocument don't match the OMT model
on p. 161. The OMT model allows a (production) ChangeNotice to refer to one or more documents,
but the operation, and the attribute ChangeNotice::speci�cation (p. 174) only allow ONE Docu-
mentSpeci�cation to be associated. The relationship modelled in the IDL is that the ChangeNotice
itself is a document, that has text, is subject to revision, etc. This relationship is between the
ChangeNotice object and the corresponding DocumentSpeci�cation and this is one-to-one. So the
OMT model should be corrected.

P. 172 classes VersionManager and ChangeNotice:

A production \change notice" is itself a document that references other documents { a feature
noticeably lacking from either DocumentRevision or ChangeNotice. (This could be addressed by

10

DocumentRelationship, as indicated above.) In our experience, a change notice going to the
oor
requires a separate approval process from the approval process for the documents it references. So
these two ideas should be separated. Any document can incorporate other documents by reference
and be subject to some approval path. Approvals have signatories and dates. Change notices are
a kind of document that has in particular an e�ectivity date (that is separate from the approval
dates). Note also that e�ectivity of the ChangeNotice is what really determines whether and when
a Document is \active."

Both the OMT model and the IDL should be corrected to support this understanding. ChangeNotice
should have two additional attributes:

/* set/get the set of DocumentRevisions made effective by this

* ChangeNotice. */

attribute sequence<DocumentRevision> associatedRevisions;

/* set/get the date on which all associatedRevisions become effective

* in production. */

attribute TimeStamp effective_date;

P. 174 class ChangeNotice: makePreparingToActivate does not \Approve a change notice."
Rather it submits the draft change notice to the approval o�cer for signature, as indicated in the
state table (p. 176). makeActivated should be \approve and activate a change notice."

P. 174 class ChangeNotice: \default SignO� set" is a curious term. The real default Signo� list
would be automatically attached to all ChangeNotices, but that is not what these operations modify.
It appears that the notion is misnamed. What is being modi�ed by these operations is not the Default
Signo� List, but rather the actual Signo� List for this ChangeNotice. Note also that the ordering of
the Signo� List may be important (i.e. a routing), as the comment under defaultSignO�Set() says.
So the semantics is not usually a Set. Change the operations to: addNameToSignO�List (...); and
removeNameFromSignO�List (...); and signO�List (...);

P. 172�, classes VersionManager and ChangeNotice:

This model of signo� creates more problems than it solves. If multiple signo�s are required to
get from PreparingToActivate to Activated, there are intermediate states that don't have names,
and a date and some form of signature, possibly electronic, that needs to be associated with the
Sign O� operation. Our general concern is that the CIMF is
irting with Work
ow Management
here, but not producing a robust model, and thus saddling subtypes with a dubious half-model.
Recommendation: \drink deep or taste not." Dump the DefaultSignO�Set operations.

D Detailed Comments on CIMF Machine Management In-

terfaces

Persistent and non-persistent views of the Machine

It is necessary in any implementation of the CIM Framework to distinguish between the persistent
view of the Machine and the non-persistent \dynamic" view.

{ The persistent view describes the past, present and future states of the hardware { con�g-
uration, sta�ng, maintenance schedule, etc. The \persistent" view is so-called because the
objects in it must be available (to planning systems) even when the machine and its controller
are physically shut down. We foresee the persistent view being supported by a database-like
equipment management agent.

11

{ The \dynamic" view describes the current operating states, the current ProcessJobs and Trans-
ferJobs, and other transient information one would expect to be supported by the machine
controller. And we foresee the object server supporting the dynamic view being the machine
controller.

The controller can expect to have access to the persistent information provided by the equipment
manager, and therefore the \controller" server can respond to messages that require persistent
information, if this is considered convenient. But the equipment manager can not expect to have
access to the information possessed by the controller.

From the proposed revisions to CIMF 1.4, we conclude that the class Machine, together with its
MachineResources, is intended to represent the persistent view, and the MachineManagement com-
ponent is intended to represent the equipment management server. From CIMF 1.3, we also con-
cluded that the ProcessJobManager and TransferJobManager classes represent the \dynamic" or
\controller" services. (This dichotomy helps to explain the existence of multiple classes in the CIMF
that seem to map imperfectly to the same manufacturing object { the \machine.")

If this is the case, CIMF 1.4 should NOT contain in the MachineManagement component ANY
operations which are to be understood as commands to the system to perform a physical function!
All such operations are properly directed to the xxxJobManager classes. Related operations on
the MachineManagement classes record the logical and physical changes of state of the hardware
systems. (In many cases, the clients for these operations will be the controllers.) This clari�cation
should appear in the comments describing those operations in CIMF 1.4, and in a few cases, the
operations should probably be renamed to avoid confusion.

Recommendation:

a. Delete the following operations on class Machine: pause, resume, canMakeActive, doPro-
cessJob, informProcessJobStarted, informProcessJobCompleted, informTransferJobStarted, in-
formTransferJobCompleted, makeAllProcessJobsAborting. transportResourceAvailable and
the four related \events."

b. Delete the following operations on ProcessResource: doProcessJob, canMakeActive, makeAc-
tive

c. On MachineResource remove the comment \Perform any activities associated with ..." from
the operations: materialLocation received, materialLocation sent

d. On PortMaterialLocation (to be MaterialPort?) remove the comment \Do any activities based
on this." from the operations: material hereAt, material goneAt

(We recognize that this particular CHOICE of assignments of server functionalities to interface
classes is controversial. We would be satis�ed with any resolution which makes a clear distinction.
Exactly which classes do we propose to be provided by the vendor of a machine controller?)

Capabilities vs. Setups

\Capability" seems to have two di�erent meanings as used in the ProcessResource operations. In
the de�nition of class ProcessCapability, and in ProcessResource::possibleCapabilities(), it means a
collection of processes the resource can perform:

/* Answer a sequence of ProcessCapabilities representing the total set

* of designed processes for this ProcessResource. */

ProcessCapabilitySequence possibleCapabilities();

But in currentCapability() and assignedCapabilities(), it apparently means \Setup," viz.:

12

/* Set and get the single ProcessCapability representing the current setup

* (configuration of consumables and fixtures) of this ProcessResource.

* This ProcessCapability must be in the assigned list. */

attribute ProcessCapability currentCapability;

/* Answer a sequence of ProcessCapabilities representing setups allowed

* for this ProcessResource. This must be a subset of the total possible

* capabilities. */

ProcessCapabilitySequence assignedCapabilities();

If the de�nition of class ProcessCapability is right, then currentCapability() and assignedCapabilities
are either misnamed or misused.

These notions are not the same, and in general there is a many-to-many relationship between \process
capabilities" and \machine setups." That is,

{ for many machines, a single standard setup may support more than one \process," depend-
ing on how �nely the concept \process capability" is delineated. (1 setup, multiple process
capabilities)

{ for some machines, di�erent standard setups of the machine may support some common pro-
cessing capabilities, and the \setup" for the same \process" may be di�erent for an alternative
machine. (1 process, multiple possible setups)

Furthermore, a machine Setup is an activity in its own right { it takes time and sta�, and for
many machines it may require material deliveries. Thus it is a non-process activity that can be
\scheduled." Setups should have a name, so that schedulers can determine eligible machines for
a process and/or cost of re-setup. The concept \machine setup" is generic to many dissimilar
manufacturing industries.

Note that, at least in mechanical parts manufacture, there is a distinction between Machine setup
and Part/Product setup. Machine setup refers to the con�guration of the machine for one or more
\process runs," while Part setup refers to the (usually manual) operations of loading and positioning
individual workpieces (Products) for processing. Machine setup should be scheduled in, while Part
setup is just factored into the \Operator instructions" and time for a speci�c process. And the
parameters/settings for the machine Setup and the Part processing may be di�erent. This distinction
is correctly supported in CIMF 1.3 by setupSettings for Machine and currentProcessSettings for
ProcessResource.

Recommendation:

a. Introduce a new \object class" { MachineSetup or ResourceSetup { to represent the Setup
concept, and copy setupSettings from Machine into this class. (Leave ProcessCapability as is.)

/* Machine Setup models the configuration of a machine for one or

more "process runs". A given setup may be specific to a single process,

or "standard" in the sense that it supports a common set of processes.

The configuration defined by a MachineSetup is supported by

specifications for the process of configuring the machine.

*/

interface MachineSetup : NamedEntity {

/* Answer the set of ProcessCapabilities supported by the Machine with

* this MachineSetup. */

ProcessCapabilitySequence capabilitiesSupported();

13

/* Answer the specification for performing the reconfiguration. */

ProcessDefinition definition();

/* Return the setup-specific settings for the Machine with this Setup. */

sequence <setting> setupSettings();

}

b. Change ProcessResource::currentCapability to currentSetup:

/* Set and get the single MachineSetup representing the current setup

* (configuration of consumables and fixtures) of this ProcessResource.

* This MachineSetup must be in the assigned list. */

attribute MachineSetup currentSetup;

c. Change ProcessResource::assignedCapabilities to assignedSetups:

/* Answer a sequence of MachineSetups representing setups allowed for

* this ProcessResource. */

sequence <MachineSetup> assignedSetups();

Machine::setupSettings

/* Set and get current setup-specific settings for the Machine. */

attribute settingSequence setupSettings;

Are these settings for the Machine (generally) or for some particular ProcessResource? The CIMF
distinguishes between a Machine and its ProcessResources and thus it appears that setupSettings is
an attribute of the wrong object. Or is there a hidden assumption that a Machine has at most one
ProcessResource?

In any case, the \setupSettings," as distinct from the current process settings (which are correctly
supported by ProcessResource), are part of the machine setup. If the above recommendation is
taken, then this should be an attribute of MachineSetup.

Machine::processCapabilities

/* Answer ProcessCapabilities this machine has. */

ProcessCapabilitySequence processCapabilities();

Which \capabilities?" The ProcessResource distinguishes \assignedCapabilities," \possibleCapabil-
ities" and \currentCapability." It appears that the intention here is really ProcessCapabilities and
that the intention is \currentCapabilities," as distinct from that attribute of the ProcessResource
which is called \currentCapability," but means the (single) \current Machine Setup." This just
needs to be clari�ed in the comments.

Machine::reserveFor

/* Reserve a Material for production. Material may be reserved for

* only one entity. Return true if successful. */

boolean reserveFor (in NamedEntity requester);

14

/* Unreserve a Material for production. */

void unreserve();

/* Return true if the Material has been reserved for production. */

boolean isReserved();

/* Return the NamedEntity for which the Material has been reserved. */

NamedEntity reservedFor();

The word \Material" should be \Machine" in all occurrences here. These are operations on the
Machine, not on some Material in it.

Also, machine reservation is not just for \production." Rather a machine is reserved for some
particular upcoming production or setup or maintenance task. NamedEntity is obviously a synonym
for \any" here, and far too gross. A Machine is really reserved by some Person (with authority) for
some not necessarily identi�able (because it may be future or engineering) Job.

Recommendation:

a. Change reserveFor to:

boolean reserve (in Person requester, in string purpose);

When it is reserved for a Job, the \purpose" can be the Job identi�er.

b. Change reservedFor to:

/* Returns the Person who has reserved the Machine, or NIL. */

Person reservedBy();

/* Returns the purpose for which the Machine is reserved, or NIL. */

string reservedFor();

E Detailed Comments on CIMF MachineResource Compo-

nent

Machine::�ndMaterialNamed

/* Answer the material with this name or nothing. */

Material findMaterialNamed(in string materialName);

This operation has the form of the name-lookup operation on MaterialManager. Whatever this
operation is supposed to mean, it should not be so named.

Why is this an operation on Machine? Is this supposed to �nd the Material if this Machine has it?
If so, this operation is conceptually:

/* Answer true if the Material is somewhere on this Machine. */

boolean findMaterial(in Material aMaterial);

or perhaps better:

/* Answer the location of the Material in this Machine, if it is

* present, or NIL if it is not present on this Machine. */

MaterialLocation findMaterial(in Material aMaterial);

15

Machine: MovementResource vs. MachineResource: MovementResource

This is an aspect of a general architectural problem with the Framework. The implementation is
confused with the service interfaces.

If an implementation provides instances of both Machine and MachineResource, then the transport
protocols de�ned for MovementResource should not be de�ned for the Machine class, and Machine
should not inherit from MovementResource. And in practice, the transfer protocol operations should
be directed to the MachineResources that inherit from MovementResource.

It is envisioned that a single CORBA \server" may support an instance of Machine and instances of
all its MachineResources. So the same server implementation will in fact provide all elements of the
\MovementResource" protocols. The Framework will support this architecture without overloading
Machine with the operations that are properly assigned to the other classes supported by the same
server.

If an implementation may elect not to provide instances of MachineResource, then the Framework
model must be altered to support that implementation. That is, that implementation is supporting
a class which inherits from both Machine and MachineResource and calling it \Machine." This
behavior should not be speci�cally included in the CIMF.

Recommendation: Change Machine so that it does not inherit from MovementResource.

What is a PortResource?

Does a PortResource model a single \port?" The following operations apparently make this as-
sumption:

Machine::firstAvailablePort

PortResource::makeInputPort, makeOutputPort, makeInputOutputPort

PortResource::isLoaded

That is, these operations seem to presume that the PortResource has only one externally accessible
container location (PortMaterialLocation). E.g. �rstAvailablePort returns a PortResource and not a
MaterialLocation, so the PortResource is either totally available or totally unavailable. And makeIn-
putPort makes ALL container receptacles at the port incoming. And the de�nition of isLoaded refers
to the PortMaterialLocation.

But the IDL (and the OMT diagram) indicate that a PortResource can have more than one Port-
MaterialLocation, i.e. externally accessible container location. If multiple container locations are
accessible, then one would expect that the individual locations would be set to input or output and
be separately available or occupied. Something is wrong here.

PortResource::isLoaded

/* Check to see if any Material is at the PortMaterialLocation (i.e.,

* a PositionalContainer/Cassette). */

boolean isLoaded();

In general, this operation is on the wrong object. It should be an operation on PortMaterialLocation.

Does this operation mean \check to see if there is a PositionalContainer in any PortMaterialLocation
at the port?" If so, the comment should be restated, as it clearly assumes that there is only one
PortMaterialLocation.

16

If the assumption that there is only one PortMaterialLocation is valid, this service is redundant, as
the service is already provided by MaterialLocation::isOccupied(), and therefore on PortMaterial-
Location, which inherits from it.

Alternatively this could mean \check to see if there is Material in any PositionalContainer at the
port." If so, the comment should be restated to make that clear.

PortResource::transferOrder() and ProcessResource::transferOrder()

This operation is an unnecessarily complicated means of specifying the required access order. The
given method requires a separate operation to �nd out what the MaterialLocations are, and assumes
that they are all to be used. Why not simply provide the sequence of MaterialLocations in the order
they are to be accessed?

And even that is not necessary if the sequence doesn't change dynamically. Since the
(Port)MaterialLocations of a PortResource or ProcessResource can be accessed by the inherited
MaterialLocationSequence materialLocations() from MachineResource, all that is wanted is
the convention that for a PortResource the (returned) Sequence is signi�cant and re
ects the re-
quired order of access.

We would also suggest adding an operation:

boolean accessIsRandom()

which returns true if the MaterialLocations can be accessed in any order.

MaterialLocation::content

The attribute of Material called \format" corresponds to the attribute of a MaterialLocation or
Container called \content." The latter is a poor choice since the true \content" of a MaterialLocation
or Container is its \currentMaterial" or \containedMaterial."

Recommendation: rename MaterialLocation::content to \contentType" or \contentFormat."

MaterialLocation status model

For MaterialLocation, the model of \status" is badly confused by attempting to make it like \states"
of other objects. In particular,

a. makeAllocated() allocates the MaterialLocation to receive a particular Material, and it could
fail, but there is no exception, and there is no way to interrogate the MaterialLocation for
the allocated Material. isAllocated returns boolean, rather than what the MaterialLocation is
allocated to.

Recommendation: change makeAllocated(in Material aMaterial) to:

allocateTo(in Material aMaterial)

raises (MaterialLocationNotAvailable);

/* Return the Material to which this MaterialLocation is allocated,

* if any, else NIL. */

Material allocatedTo();

One can leave boolean isAllocated(), for clients who don't need the details.

17

b. isInService is a \state" that is independent of all the others. That is, a MaterialLocation can
be simultaneously InService and Occupied. So the model is:

attribute boolean isInService;

There is nothing wrong with the current methods, except that they follow a pattern that is
elsewhere only applied to mutually exclusive states.

c. makeOccupied() and makeNotOccupied() are totally inappropriate. The model is:

boolean isOccupied() { material() != NIL };

That is, isOccupied() is simply the interpretation of the fact that the material() operation does
not return NIL, and the means of modi�cation is materialReceived() and materialSent().

Recommendation: makeOccupied() and makeNotOccupied() should be deleted,

d. isNotOccupied is not a useful function. First, it is the same as � isOccupied(). (And there are
no parallel isNotAllocated or isNotAvailable functions.) Second, isAvailable() is the question
that the client should ask.

Recommendation: delete isNotOccupied().

e. The comment on isAvailable() says:

/* Available = InService and not Allocated, Reserved, or Occupied. */

but there is no operation that \reserves" a MaterialLocation. It is possible that there should
be.

Recommendation: Either remove the word \Reserved" from the comment, OR add reserveFor()
and isReserved().

MaterialLocation::resourceOwner

The comments say that a MaterialLocation \is a place in a MachineResource," and the de�nition of
MachineResource con�rms that. But method resourceOwner() is:

/* Return the owning Resource. */

Resource resourceOwner();

Recommendation: change it to

MachineResource resourceOwner();

Quali�cation of MaterialLocation \names"

The quali�cation of MaterialLocation \names" is correct, but inadequately described.

Recommendation:

a. Change the comment on machineName() from

/* Return the name of this MaterialLocation qualified to the Machine. */

to read:

18

/* Return the name of this MaterialLocation qualified to the Machine

* that owns the MachineResource, i.e.\ the resourceOwner(). */

b. Change the comment on resourceName() from

/* Return the name of this MaterialLocation qualified to the

* MachineResource. */

to read:

/* Return the name of this MaterialLocation qualified to the owning

* MachineResource. */

MaterialLocation should not inherit from Resource

MaterialLocation is said to inherit from Resource. This implies that it must support startup(),
shutdown(), etc. This is almost certainly wrong, and nothing else useful is inherited directly from
Resource. The resourceOwner() (which should be a MachineResource) should support startup(),
shutdown(), etc. and the naming conventions are already supported by speci�c methods on Materi-
alLocation.

Recommendation: Change MaterialLocation to delete the inheritance from Resource.

LocationPortal should be a kind of MaterialLocation

LocationPortal has no modelled properties, except a many-to-many relationship with MaterialLo-
cation. It is the subject of several transfer operations. It inherits from Resource a name and an
ownership relationship, although what might own it is not clear (a MachineResource? a Machine?).
It also inherits from Resource startup and shutdown operations which are completely inappropriate.

It seems that a LocationPortal { the point at which a change of ownership occurs { must be a physical
place which is able to hold a Material or a Container. And that would make it a MaterialLocation
of yet another specialized type. Thus it seems that a LocationPortal should inherit most methods
from MaterialLocation: it too can have content, format, inService, allocation, etc.

Recommendation:

a. make LocationPortal inherit from MaterialLocation

b. make a new interface, e.g. StorageLocation, to inherit from MaterialLocation and provide the
methods (moved from MaterialLocation):

/* Answer the portals the MaterialLocation may be accessed by. */

LocationPortalSequence portals();

/* Add a LocationPortal to the MaterialLocations's collection of

* access portals. */

LocationPortal addLocationPortal (in LocationPortal aLocationPortal);

/* Remove a LocationPortal from the MaterialLocations's collection of

* access portals. */

LocationPortal removeLocationPortal (in LocationPortal aLocationPortal);

/* Answer the current portal the MaterialLocation has been using. */

LocationPortal portal();

19

(It will be seen immediately that these are cognate to the three methods supported by Loca-
tionPortal objects.)

How is a PortMaterialLocation related to a LocationPortal?

It is not clear how a PortMaterialLocation is related to a LocationPortal, but the de�nition of
LocationPortal certainly �ts a PortMaterialLocation. It seems in fact that these are two di�erent
models of the same objects. If there is a real di�erence, at least one of the de�nitions needs to
make clear what it is. If the above model of LocationPortal is adopted, it seems that one of
PortMaterialLocation and LocationPortal can be deleted, since they have identical models.

A guess is that people modelling storage resources (like an ASRS) model their input/output ports as
LocationPortals and think of MaterialLocations as storage locations, while people modelling process
resources model their input ports as PortMaterialLocations, which to them is just a special kind of
place to hold material { a MaterialLocation. But the CIMF has to re
ect an integrated conceptual
model, in which the critical question is: do these objects have the same properties and operations?
And the answer appears to be: yes.

Do PortResources have MaterialLocations that are not PortMaterialLo-
cations?

The de�nition says

/* A PortMaterialLocation is a location owned by a PortResource, and only

PortResources may own PortMaterialLocations. A PortMaterialLocation is a

specialized MaterialLocation used to hold a container at a port. Its use

with a PortResource distinguishes it from other specializations of

MaterialLocation.

*/

It appears that the second sentence is the de�nition. It should appear �rst. It appears that
the �rst and third sentences say exactly the same thing, but what they are trying to say is:
Every MaterialLocation in a PortResource is a PortMaterialLocation, and every PortMaterialLo-
cation is owned by a PortResource. Is this correct? (What is not clear from the wording is whether
a PortResource can also have MaterialLocations that are not PortMaterialLocations.)

How do the PortResource operations addPortMaterialLocation and removePortMaterialLocation
relate to the inherited (from MachineResource) operations addMaterialLocation and removeMateri-
alLocation? Why should a PortResource have both?

Recommendation: Delete operations addPortMaterialLocation and removePortMaterialLocation.

F Detailed Comments on CIMF Process De�nitions

Global Type de�nitions (4.1.1)

typedef struct setting_struct {

string settingName; // the name of the setting

// (e.g., "Temperature")

any settingValue ; // the value for the setting

// (e.g., 125)

unit units ; // the units of the setting

20

// (e.g., "degC"

} setting ;

This use of \any" is needless and complicates the CORBA interface for both the client and the
server. The datatype of \settingValue" should be \string." For those cases in which settingValue
needs to be interpreted as an integer or
oating-point number, the server knows what to expect and
most processing languages provide \built-in" conversion routines of one form or another. By making
it \any," all one does is substitute the ORB-provider's favorite conversion routine and complicate
the interface into a discriminated union.

ProcessDe�nitionManager

/* This signal is raised when attempt is made to remove a

* ProcessDefinition when it contains a sequence of ProcessDefinitions. */

exception ProcessDefinitionContainsASequenceNoRemoveSignal

{ string processDefinitionName ; } ;

Why?

/* This signal is raised when a ProcessDefinition removal operation fails.*/

exception ProcessDefinitionNotFoundSignal

{ string processDefinitionName ; } ;

/* This signal is raised when a ProcessDefinition retrieval fails. */

exception ProcessDefinitionRetrievalFailedSignal

{ string processDefinitionName ; } ;

This is the strange view of exception returns again. They should both be NotFound. Find by name
is not a \retrieval." All that is returned is the object-reference.

/* Creates an atomic level ProcessDefinition (no sequence of

ProcessDefinitions), places it by name in the collection of

ProcessDefinitions, and sets the pointer to its Document. */

ProcessDefinition createProcessDefinitionNamed_inDocument

(in string processDefinitionName,

in ProcessDefinitionSequence processDefinitions,

in DocumentSpecification aDocumentSpecification)

raises (ProcessDefinitionDuplicateSignal);

The second argument to this method contradicts the comment. By de�nition, the sequence must be
empty. Recommendation: delete the second argument, or change the comment to explain what this
really means.

/* Creates a ProcessDefinition (with a sequence of ProcessDefinitions),

places it by name in the collection of ProcessDefinitions, and sets

the pointer to its Document. */

ProcessDefinition createProcessDefinitionNamed_withSequence_inDocument

(in string processDefinitionName,

in ProcessDefinitionSequence processDefinitions,

in DocumentSpecification aDocumentSpecification)

raises (ProcessDefinitionDuplicateSignal);

Some part of 4.2.4.3 needs to make clear what the meaning of the ProcessDe�nitionSequence pa-
rameter (and attribute of ProcessDe�nition) means. Is the new ProcessDe�nition to be interpreted
as the concatenation of the ProcessDe�nitions in the sequence? Or is it to be interpreted as the
sequence of (what will become) ProcessFlowNodes by assigning one ProcessFlowNode to each un-

21

derlying ProcessDe�nition? And what is the relationship to the Document object? i.e. how does it
de�ne the process and reference these \included" ProcessDe�nitions?

/* Creates the ProcessFlowContext for a particular Product (workpiece)

* from a ProcessFlow. */

ProcessFlowContext createProcessFlowContext_forProduct

(in ProcessFlow aProcessFlow, in Product aProduct);

This seems to be an incorrect substitute for what is really wanted: assignment of a ProcessFlow-
Context for a particular Lot. Only in the degenerate case will a (possibly subdivided) Lot consist of
a single workpiece. I assume that the thinking here is to capture rework and feed-forward process
modi�cations, but rework often involves changing the routing and the routing unit is a Lot. Note
that the Materials Management component allows for decomposition and recomposition of Lots.
Using a per-Product routing model here defeats the whole purpose of that model.

Changing only the process parameters for a particular workpiece should be addressed by some other
means.

Notes: ProcessFlowContext and ProcessFlow

Although the OMT diagram shows a relationship between these classes, and there is an operation
on ProcessDe�nitionManager that creates a ProcessFlowContext from a ProcessFlow, there is no
operation on the ProcessFlowContext that returns the associated ProcessFlow.

This relationship is \internal" to the component (implementation). The manufacturing executive
deals only with ProcessFlowContext:: beginNextProcessOperation and currentProcessOperation.
And therefore ProcessFlow should be an internal object to the component that exposes no operations.
(The external object is a ProcessDe�nition, from which the Flow is created.)

But the ProcessFlow object is what is attached to the ProductSpeci�cation. This also seems incor-
rect. If the ProductSpeci�cation is supported by a Product Data Management (PDM) system, for
example, what will be attached is the ProcessDe�nition object that de�nes the ProcessFlow.

Recommendation:

a. delete the ProcessFlow object.

b. change

/* Creates the ProcessFlowContext for a particular Product (workpiece)

* from a ProcessFlow. */

ProcessFlowContext createProcessFlowContext_forProduct

(in ProcessFlow aProcessFlow, in Product aProduct);

to

/* Creates the ProcessFlowContext for a particular Product (workpiece)

* using its ProductSpecification. */

ProcessFlowContext createProcessFlowContext_forProduct

(in Product aProduct);

ProcessStep

/* The ProcessStep class specifies what to do to a material. It is the

application of the product's specification of processing for a

22

particular product given the product's history. It is created from a

single (atomic level) ProcessDefinition and contains settings and a

ProcessResource set and a ProcessCapability.

*/

While the settings and resource set and capability are attributes of this class, the ProcessDe�nition
is not. This is an error { the ProcessDe�nition is what gives meaning to the ProcessStep object.
Add:

/* the definition of the operation to be performed */

stepDefinition: ProcessDefinition;

ProcessDe�nition

ProcessDefinition addFirst (in ProcessDefinition aProcessDefinition)

ProcessDefinition add_after (...)

ProcessDefinition remove (...)

The naming of these methods does not conform to the v1.3 naming conventions.

/* Set and get the ProcessOperationSpecification to use for the

* ProcessDefinition. */

attribute ProcessOperationSpecification

referenceProcessOperationSpecification;

This relationship is not on the OMT diagram 4.28, and disagrees with the 4.2.4.3 description of the
model.

On the OMT diagram, the relationship is to ProcessFlowNode. In this, the OMT diagram is wrong.
Only \Operation" Nodes have associated ProcessDe�nitions.

On the OMT diagram, this relationship is one-to-many. That is, several di�erent ProcessOpera-
tionSpeci�cation nodes may reference the same ProcessDe�nition. In this, the OMT diagram is
correct. The attribute should be

attribute sequence<ProcessOperationSpecification> ...

In fact, this models a not clearly useful \inverse" relationship. The important relationship is that
each ProcessOperationSpeci�cation node points to its de�nition (the ProcessDe�nition), and (tech-
nically) many may point to the same one.

/* Adds a time estimate for this ProcessResource set used in the

* process. This information is used for planning and scheduling. */

void addTimeEstimate_for

(in long timeUnits, in ProcessResourceSequence aProcessResourceSet);

Should not \long" above be Duration? (The great advantage of Duration is that it reconciles
\timeUnits" from di�erent process engineers.)

Note that one can addTimeEstimate for but not removeTimeEstimate for. This suggests that the
intended implementation is that the time value is added only for those Resources in aProcessRe-
sourceSet which already happen to be in the hidden \eligibleProcessResources" list (maintained by
addSettings for, removeSettings from). This suggests that there is either a missing method or a
missing exception here.

/* The ProcessCapability to use for the ProcessDefinition. */

attribute ProcessCapability requiredProcessCapability;

23

Suggest replacing the comment with:

/* The ProcessCapability required for a ProcessResource to perform

* the process defined by this ProcessDefinition. Note -- an

* impaired ProcessResource might lose some of its Capabilities,

* so this is not redundant with the eligible ProcessResource set. */

/* Remove settings for a set of ProcessResources. The sequence of settings

* and ProcessResources that are passed into the service do not have any

* implied order. */

void removeSettings_from (in settingSequence settings,

in ProcessResourceSequence aProcessResourceSet);

Is it intended that removal of a setting be conditional on both the Name and the Value of the
setting matching the one in the list? Or just the Name? If the intent is Both, then some kind of
exception should certainly be possible. And if the intent is only Name, then the method seems to
be misde�ned, in that the �rst argument should be simply:

in stringSequence settingNames;

/* Return the settings for a given ProcessResource. The order of the

* returned sequence of settings is unspecified. */

settingSequence settingsFor (in ProcessResource aProcessResource);

This method should \fail" and return an exception if aProcessResource is not in the eligible Pro-
cessResources list. Returning the empty set implies that the ProcessResource is there and has an
empty list of settings.

Relationship of ProcessDe�nition to ProcessResources

The relationship between the ProcessDe�nition object and the ProcessResources which can perform
it is strangely modelled.

First, no such relationship is depicted in the OMT diagram. Rather the OMT diagram shows the
relationship to ProcessResource to belong to the ProcessOperationSpeci�cation. In this, the OMT
diagram is not quite right. The real relationship is between the underlying ProcessDe�nition and
the eligible ProcessResources, and the ProcessOperationSpeci�cation derives its eligible resources
from that relationship.

Second, the relationship between the ProcessDe�nition and the eligible ProcessResources seems to
involve a \hidden object," since that relationship itself has attributes { timeEstimate and (control)
settings. This hidden object need not appear on the OMT diagram, but it MUST be explained in
the text.

Third, there is apparently an unstated rule that it is only possible to add an eligible ProcessResource
to the list by supplying the associated \settings." That is, the means of adding a ProcessResource to
the list is called addSettings for. This is not at all clear from the comment, but there is no method
for attaching the eligible ProcessResource by itself.

This rule fails to understand the engineering reality. A process engineer can determine by vari-
ous means what resources can perform an Operation long before he can perform the experiments
to determine the proper settings, or the estimated time. So there should really be methods to
set/add/remove eligible ProcessResource relationships, in addition to methods to attach the set-
tings and timeEstimates to those relationships.

Fourth, it is not at all clear that removeSettings from actually removes the resources themselves
from the eligible list, but there is no other way of removing a ProcessResource from that list.

24

Fifth, there is no method that returns the list of all eligible ProcessResources.

Recommendation: Add an attribute:

/* The ProcessResources which could (normally) perform the process

* specified by this ProcessDefinition.

* The sequence of ProcessResources does not imply preference. */

attribute ProcessResourceSequence eligibleProcessResources;

and possibly two additional methods:

void addEligibleProcessResource (in ProcessResource aProcessResource);

void removeEligibleProcessResource (in ProcessResource aProcessResource);

ProcessFlow

This class represents the sequence of ProcessDefinitions that define

how to manufacture the product. The processFlow itself is made up of

ProcessFlowNodes (graph nodes) which comprise a general graph

structure. The primary entry points to the flow are determined by using

the entryPoints service. The ProcessFlow can then be traversed using the

supplied protocol below. Each node in the graph that is a

ProcessOperationSpecification will be used to create a ProcessOperation

which can be used by the processResource.

First, the intent is that the ProcessFlow is in the general case a directed graph, having at least parallel

ows and apparently optional
ows. Therefore it is not the \sequence" of ProcessDe�nitions.

Second, it is not clear from any of the text what \entryPoints" actually returns. If the Process-
Flow is a linear sequence, then does entryPoints() return that sequence, i.e. the sequence of all
ProcessFlowNodes? And if the graph is not simply a linear sequence, then what \sequence" does
entryPoints() return, and what is the meaning of the ordering?

Finally, the last sentence is a comment on ProcessOpSpec and not on ProcessFlow.

/* Returns a sequence of ProcessFlowNodes that are the immediate

* successors of this ProcessFlowNode. */

ProcessFlowNodeSequence nextProcessFlowNodesFrom

(in ProcessFlowNode aProcessFlowNode)

raises (ProcessFlowNodesRetrievalFailedSignal);

This is misidenti�ed as an operation on a ProcessFlow. It is, by its nature, an operation on a
ProcessFlowNode.

Also, if the \sequence" returned is all \immediate successors," then the \sequence" is logically a
\set," that is, the ordering has no meaning. Or does it?

Recommendation: Either change \a sequence" to \the set," or specify the meaning of the ordering.

Question: Why is the interface set up to retrieve �rst/next only for ProcessOperationSpeci�cations?
One would think that the scheme would apply to ProcessFlowNode generally. The implication of
the interface as written is that intervening nodes that are not ProcessOperationSpeci�cations would
be skipped. Is this intended?

ProcessFlowContext

/* Updates the current ProcessOperation to the next ProcessOperation in

25

* the flow. This service is also used to start the ProcessFlowContext

* "walk" by positioning at the first ProcessOperation. */

void beginNextProcessOperation()

raises (NoMoreProcessOperationsSignal);

The nomenclature is misleading. Following v1.3 conventions, we recommend:

informNextProcessOperationStarted()

ProcessOperationSpeci�cation

long processingTimeFor_on

(in long numberOfProducts,

in ProcessResource aProcessResource);

The use of \long" here is inappropriate. The datatype should be Duration.

G Other Miscellaneous Comments on CIMF

Person::responsibilities

The description of the operation in IDL is di�erent from the description in English in the comments:

/* Return the responsibilities (objects within a factory) which are

* assigned to a Person's responsibility category. For example, return all

* of the DocumentSpecifications in the category "specification management".

*/

personResponsibilitySequence responsibilities () ;

As de�ned the operation returns all responsibilities as a list of pairs (category, responsibility-object).
This is probably a useful operation, but not what the comment describes. If the intention is to return
all responsibilities in a speci�c category, as the comment indicates, then the operation should be:

anySequence responsibilities (in string responsibilityCategory);

Person::personResponsibility

The comment does not correctly describe the IDL data structure:

/* This type represents a dictionary of key/value pairs that represents

* Personal responsibility associations. The key is

* the "responsibility category name" while the value is the set of factory

* objects associated with that category. */

typedef struct personResponsibilitystruct {

string responsibilityCategory ;

any responsibility ;

} personResponsibility;

typedef sequence<personResponsibility> personResponsibilitySequence;

\This type" refers to \personResponsibilitySequence" (the second typedef, not the �rst) and is
correctly described as a \dictionary" of key/value pairs. But in each pair the value is one factory
object ..., not \the set of factory objects"

26

History::at

What sort of \key" is envisioned for the \any" in operation \at?"

/* returns the HistoryEvent at the key */

HistoryEvent at(in any historyKey)

raises (KeyNotFoundSignal);

The only attribute modelled for type HistoryEvent is a TimeStamp. Subtypes of histories that
have subtypes of events with other keys will need to model the appropriate key search operations.
Recommendation: Change \any" to \TimeStamp," viz.:

/* returns the HistoryEvent at/nearest the specified time key */

HistoryEvent at(in TimeStamp historyKey)

raises (KeyNotFoundSignal);

History::from to

/* returns a collection of all the HistoryEvents that occurred between

* startingEvent to endingEvent (inclusive) from the History. */

HistoryEvent from_to

(in HistoryEvent startingHistoryEvent,

in HistoryEvent endingHistoryEvent)

raises (KeyNotFoundSignal);

According to the comment this function should return type HistoryEventSequence.

ProcessRun::value

ProcessRun inherits attribute \value" from HistoryEventData, where it is declared type \any."
What is really intended is:

/* Set and get the value of the HistoryEventData. */

attribute ProcessRunInformation value;

Since type \any" has a very high programming and support overhead in CORBA implementations,
such \template" methods and attributes as HistoryEventData::value should be commented out (until
IDL acquires \virtual" operation declarations) and the overrides for speci�c subtypes should be
included in the running IDL.

ProcessRunInformation::inputs()

Are these the same as \settings?"

Since ProcessRunInformation is attached to the ProcessResource and not to the Product or Prod-
uctSpeci�cation, it appears that either the concept \inputs" is heavily overloaded, or there is a
missing attribute: the Lots processed during the run. Suggest adding:

/* Answer a sequence of the Lots processed during this run,

* in the order they were processed. */

LotSequence lotsProcessed();

/* Add a Lot at the end of the sequence of Lots processed

* during this run. */

27

void addLot(in Lot aLot);

28

